Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Akdeniz, M. Vedat" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Effect of Mo addition on microstructure, ordering, and room-temperature mechanical properties of Fe-50Al
    (ELSEVIER SCIENCE BV, 2018) Yildirim, Mehmet; Akdeniz, M. Vedat; Mekhrabov, Amdulla O.
    The effects of Mo addition on microstructures, phase relationships, order-disorder phase-transition temperatures and room-temperature mechanical properties of Fe50Al50-nMon alloys (n=1, 3, 5, 7, and 9, mole fraction, %) were investigated after solidification and heat treatment. Structural characterization of the samples was performed via X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential scanning calorimetry. Room-temperature mechanical properties were investigated by conducting compression and microhardness tests. Mo3Al particles precipitated in all alloys because of the limited solid solubility of Mo in the Fe-Al-based phases. The as-cast Fe50Al50-nMon alloys exhibited brittle behavior with high yield strength and limited fracture strain at room temperature. Compared with the as-cast alloys, all the heat-treated alloys except for the Fe50Al41Mo9 alloy exhibited enhanced mechanical properties at room temperature. The heat-treated Fe50Al43Mo7 alloy exhibited the highest fracture strain and compressive strength of 25.4% and 2.3 GPa, respectively.
  • Küçük Resim Yok
    Öğe
    Microstructural evolution and room-temperature mechanical properties of as-cast and heat-treated Fe50Al50-nNbn alloys (n=1, 3, 5, 7, and 9 at%)
    (ELSEVIER SCIENCE SA, 2016) Yildirim, Mehmet; Akdeniz, M. Vedat; Mekhrabov, Amdulla O.
    The microstructural evolution and room-temperature mechanical properties of Fe50Al50-nNbn alloys (n=1, 3, 5, 7, and 9 at%) were investigated after solidification and subsequent heat treatment. For all the compositions, the (Fe, Al)(2)Nb Laves phase formed because of the incomplete solid solubility of Nb in the Fe-Al-based phases and tended to develop an eutectic mixture with the Fe-Al-based phase. According to the results of EDS analysis and microstructural investigations, the Nb concentration of the eutectic composition was 9 at%, and the solid solubility of Nb in the B2-type Fe-Al-based phase was 3 at%. In addition, the eutectic phase transition temperature was approximately 1265 degrees C. Compared with the as cast state, all the heat-treated alloys exhibited ultrahigh compressive strength and considerably increased compressive fracture strains. The heat-treated hypoeutectic Fe50Al42Nb3 alloy exhibited the highest compressive strength and fracture strain of 3.02 GPa and 33.1%, respectively, and the eutectic Fe(50)oAl(41)Nb(9) alloy exhibited the lowest compressive strength and fracture strain of 2.66 GPa and 21.8%, respectively, because of the absence of the comparably softer Fe-Al-based primary dendrites. The superior mechanical properties of the heat-treated alloys were attributed to the bimodal distribution of the microstructure, structural incoherency between the crystalline phases, and elimination of solidification artifacts and lattice defects. (C) 2016 Elsevier B.V. All rights reserved.

| Selçuk Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Selçuk Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Konya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim