Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Gürsoy, M." seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Roll-to roll initiated chemical vapor deposition of super hydrophobic thin films on large-scale flexible substrates
    (Elsevier Ltd, 2020) Şakalak, H.; Yılmaz, K.; Gürsoy, M.; Karaman, M.
    In this study, a large-scale roll-to-roll initiated chemical vapor deposition (iCVD) system was developed to allow for coating superhydrophobic thin films on flexible substrates. Poly(hexafluorobutyl acrylate), which possesses a short fluorinated side-chain, was chosen as the hydrophobic finish material, while a commercial porous bamboo fabric was used as the flexible substrate. After iCVD coating, bamboo surface, which is superhydrophilic by its nature, transformed into a superhydrophobic with a water contact angle of 156° without changing its porous and flexible structure. Similar hydrophobic properties were observed against various daily liquids. Complete coverage of as-deposited films on both sides of bamboo surfaces was observed at very high roll speeds up to 225 mm/min, which allow coatings on 20 m2 flexible substrates in a single run. Large scale contact angle and chemical uniformity of coatings on fabric surfaces were evaluated using contact angle and XPS analyses. © 2019 Elsevier Ltd
  • Yükleniyor...
    Küçük Resim
    Öğe
    Synthesis of Titania nanotubes/polyaniline via rotating bed-plasma enhanced chemical vapor deposition for enhanced visible light photodegradation
    (ELSEVIER SCIENCE BV, 2019) Subramaniam, M. N.; Goh, P. S.; Lau, W. J.; Ismail, A. F.; Gürsoy, M.; Karaman, M.
    This study employed rotating bed plasma enhanced chemical vapor deposition technique to coat a thin polymeric film of polyaniline (PANI) onto titania nanotubes (TNT). The effect of plasma power on the growth of thin film polymer on the photocatalyst surface was investigated. Transmission electron microscope micrographs evidenced the formation of thin polymeric layers on TNT surface. Fourier-transform infrared spectra confirmed the presence of functional groups associated with PANI. The band gap of coated photocatalyst reduced from 3.23 eV to 2.54 eV, implying the photosensitivity of TNT-PANI in visible light range, while photoluminescence spectra showed that PANI coated TNT exhibited lower recombination rates. The photocatalytic performance of the resultant TNT-PANI titania were evaluated under both UV and visible light irradiation using reactive black 5 (RB 5) as the model pollutant. Unlike TNT which could only be activated under UV light, TNT-PANI coated using a plasma power of 50 W exhibited superior photoactivity under both ultraviolet (UV) and visible light irradiation. The incorporation of PANI enhanced UV light photodegradation performance, where reaction rate improved to 0.615 ppm min(-1) and three times higher compared to uncoated TNT. The best sample TNT-PANI 50 W exhibited promising photodegradation efficiency of 56.4% within 240 min of visible light irradiation.

| Selçuk Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Selçuk Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Konya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim