Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Gridach, Mourad" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Empirical Evaluation of Word Representations on Arabic Sentiment Analysis
    (SPRINGER-VERLAG BERLIN, 2018) Gridach, Mourad; Haddad, Hatem; Mulki, Hala
    Sentiment analysis is the Natural Language Processing (NLP) task that aims to classify text to different classes such as positive, negative or neutral. In this paper, we focus on sentiment analysis for Arabic language. Most of the previous works use machine learning techniques combined with hand engineering features to do Arabic sentiment analysis (ASA). More recently, Deep Neural Networks (DNNs) were widely used for this task especially for English languages. In this work, we developed a system called CNN-ASAWR where we investigate the use of Convolutional Neural Networks (CNNs) for ASA on 2 datasets: ASTD and SemEval 2017 datasets. We explore the importance of various unsupervised word representations learned from unannotated corpora. Experimental results showed that we were able to outperform the previous state-of-the-art systems on the datasets without using any kind of hand engineering features.

| Selçuk Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Selçuk Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Konya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim