Yazar "Guven, Aysegul" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Comparison of different classifier algorithms for diagnosing macular and optic nerve diseases(WILEY, 2009) Polat, Kemal; Kara, Sadik; Guven, Aysegul; Gunes, SalihThe aim of this research was to compare classifier algorithms including the C4.5 decision tree classifier, the least squares support vector machine (LS-SVM) and the artificial immune recognition system (AIRS) for diagnosing macular and optic nerve diseases from pattern electroretinography signals. The pattern electroretinography signals were obtained by electrophysiological testing devices from 106 subjects who were optic nerve and macular disease subjects. In order to show the test performance of the classifier algorithms, the classification accuracy, receiver operating characteristic curves, sensitivity and specificity values, confusion matrix and 10-fold cross-validation have been used. The classification results obtained are 85.9%, 100% and 81.82% for the C4.5 decision tree classifier, the LS-SVM classifier and the AIRS classifier respectively using 10-fold cross-validation. It is shown that the LS-SVM classifier is a robust and effective classifier system for the determination of macular and optic nerve diseases.Öğe A hybrid automated detection system based on least square support vector machine classifier and k-NN based weighted pre-processing for diagnosing of macular disease(SPRINGER-VERLAG BERLIN, 2007) Polat, Kemal; Kara, Sadik; Guven, Aysegul; Gunes, SalihIn this paper, we proposed a hybrid automated detection system based least square support vector machine (LSSVM) and k-NN based weighted pre-processing for diagnosing of macular disease from the pattern electroretinography (PERG) signals. k-NN based weighted pre-processing is pre-processing method, which is firstly proposed by us. The proposed system consists of two parts: k-NN based weighted pre-processing used to weight the PERG signals and LSSVM classifier used to distinguish between healthy eye and diseased eye (macula diseases). The performance and efficiency of proposed system was conducted using classification accuracy and 10-fold cross validation. The results confirmed that a hybrid automated detection system based on the LSSVM and k-NN based weighted pre-processing has potential in detecting macular disease. The stated results show that proposed method could point out the ability of design of a new intelligent assistance diagnosis system.