Yazar "Kalkan, Erol" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Behavior of tunnel form buildings under quasi-static cyclic lateral loading(TECHNO-PRESS, 2007) Yuksel, S. Bahadir; Kalkan, ErolIn this paper, experimental investigations on the inelastic seismic behavior of tunnel forrn buildings (i.e., box-type or panel systems) are presented. Two four-story scaled building specimens were tested under quasi-static cyclic lateral loading in longitudinal and transverse directions. The experimental results and supplemental finite element simulations collectively indicate that lightly reinforced structural walls of tunnel form buildings may exhibit brittle flexural failure under seismic action. The global tension/compression couple triggers this failure mechanism by creating pure axial tension in outermost shearwalls. This type of failure takes place due to rupturing of longitudinal reinforcement without crushing of concrete, therefore is of particular interest in emphasizing the mode of failure that is not routinely considered during seismic design of shear-wall dominant structural systems.Öğe Pros and cons of multistory RC tunnel-form (box-type) buildings(JOHN WILEY & SONS LTD, 2008) Kalkan, Erol; Yueksel, S. BahadirTunnel-form structural systems (i.e., box systems), having a load-carrying mechanism composed of reinforced concrete (RC) shear walls and slabs only, have been prevailingly utilized in the construction of multistory residential units. The superiority of tunnel-form buildings over their conventional Counterparts sterns from the enhanced earthquake resistance they provide. and the considerable speed and economy of their construction. During recent earthquakes in Turkey, they exhibited better seismic performance in contrast to the damaged condition of a number of RC frames and dual systems (i.e., RC frames with shear wall configurations). Thus the tunnel-form system has become a primary construction technique in many seismically active regions. In this paper, the strengths and weaknesses of tunnel-form buildings are addressed in terms of design considerations and construction applications. The impacts of shear wall reinforcement ratio and its detailing on system ductility, load-carrying capacity and failure mechanism under seismic forces are evaluated at section and global system levels. Influences of tension/compression Coupling and wall openings on the response are also discussed. Three-dimensional nonlinear finite element models, verified through comparisons with experimental results, were used for numerical assessments. Findings from this projection provide useful information on adequate vertical reinforcement ratio and boundary reinforcement to achieve enhanced performance of tunnel-form buildings under seismic actions. Copyright (c) 2007 John Wiley & Sons, Ltd.