Some graph theoretical properties over zero-divisor graphs of special finite commutative rings

dc.contributor.authorAkgüneş, Nihat
dc.contributor.authorTogan, M.
dc.date.accessioned2020-03-26T18:32:59Z
dc.date.available2020-03-26T18:32:59Z
dc.date.issued2012
dc.departmentSelçuk Üniversitesien_US
dc.description.abstractLet R be a commutative ring with identity and let ?(R) be the set of zero-divisors of R. It has been widely studied the notion of the zero-divisor graph of R which is defined by ?T(R) = ?(R) \{0} such that the 'distinct vertices x and y are adjacent if and only if xy = 0. As main results of this paper, by considering R = ? q×? q for different primes p and q, we prove some graph theoretical properties over ?(? p × ? q) which are the generalizations of the results in [12].en_US
dc.identifier.endpage315en_US
dc.identifier.issn1229-3067en_US
dc.identifier.issue2en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.startpage305en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12395/28815
dc.identifier.volume22en_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.relation.ispartofAdvanced Studies in Contemporary Mathematics (Kyungshang)en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.selcuk20240510_oaigen_US
dc.titleSome graph theoretical properties over zero-divisor graphs of special finite commutative ringsen_US
dc.typeArticleen_US

Dosyalar