Functional constituents of six wild edible Silene species: A focus on their phytochemical profiles and bioactive properties
Tarih
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
Özet
Six wild species (S. alba, S. conoidea, S. dichotoma, S. italica, S. supina, and S. vulgaris) from the Silene genera were tested for potential anti-enzymatic (acetyl cholinesterase (AChE), butyryl cholinesterase (BChE), tyrosinase, alpha-amylase, and alpha-glucosidase), antimicrobial (16 microbial strains), and antioxidant activity. An ultra-high performance liquid chromatography-electrospray ionization-tandem mass spectrometry method was used for phytochemical determination. Quinic acid, malic acid, protocatechuic acid, p-coumaric acid, and hesperidin were common in the six Silene species. All extracts showed higher antibacterial effects compared to streptomycin and ampicillin (except S. dichotoma). Antifungal agents, bifonazole (MIC 0.10-0.20 mg/mL and MFC 0.20-0.30 mg/mL) and ketoconazole (MIC 0.15-2.30 mg/mL and MFC 0.20-3.50 mg/mL) showed lower activity than the investigated Silene species extracts. S. alba inhibited AChE (2.00 mg GALAE/g extract) and BChE (1.0 mg GALAE/g extract). The results showed metal chelating potential ranging from 12 to 19 mg EDTAE/g extract, with S. conoidea being the most active, and S. supina the least. S. dichotoma showed the highest reducing potential against both cupric (154 mg TE/g extract for CUPRAC) and ferric (102 mg TE/g extract for FRAP) ions. Overall, Silene species could be considered as emerging interesting functional foods and sources of nutraceuticals with applications in the management of different diseases.