Experimental investigation and radial basis function network modeling of direct evaporative cooling systems
dc.contributor.author | Kavaklioglu, Kadir | |
dc.contributor.author | Koseoglu, Mehmet F. | |
dc.contributor.author | Caliskan, Oguz | |
dc.date.accessioned | 2020-03-26T19:53:56Z | |
dc.date.available | 2020-03-26T19:53:56Z | |
dc.date.issued | 2018 | |
dc.department | Selçuk Üniversitesi | en_US |
dc.description.abstract | Radial basis function network method is used for modeling a direct evaporative cooling system. Air dry exit temperature, air pressure drop across the cooler and cooler efficiency are predicted using these models. The inputs are pad thickness, air inlet speed, air dry inlet temperature, relative humidity at the inlet and feed water temperature. The data for the models are taken from the experiments performed specifically for this purpose. Model validation is performed using twofold cross validation method. A grid search is used to determine optimal network parameters, such as, optimum number of radial basis elements and spread parameter. Validated models are tested against ordinary least squares models for the output variables. The results indicate that it is feasible to apply radial basis function networks to model direct evaporative coolers. (C) 2018 Elsevier Ltd. All rights reserved. | en_US |
dc.description.sponsorship | Scientific and Technological Research Council of Turkey (TUBITAK)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [TUBITAK 7110495] | en_US |
dc.description.sponsorship | Financial support for this study by the Scientific and Technological Research Council of Turkey (TUBITAK) under grant no. TUBITAK 7110495 is gratefully acknowledged. Authors would also like to thank Alindair Evaporative Cooling Systems Inc. for their technical support. | en_US |
dc.identifier.doi | 10.1016/j.ijheatmasstransfer.2018.05.022 | en_US |
dc.identifier.endpage | 150 | en_US |
dc.identifier.issn | 0017-9310 | en_US |
dc.identifier.issn | 1879-2189 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.startpage | 139 | en_US |
dc.identifier.uri | https://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.05.022 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12395/36626 | |
dc.identifier.volume | 126 | en_US |
dc.identifier.wos | WOS:000442979300012 | en_US |
dc.identifier.wosquality | Q1 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | PERGAMON-ELSEVIER SCIENCE LTD | en_US |
dc.relation.ispartof | INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.selcuk | 20240510_oaig | en_US |
dc.subject | Evaporative cooling | en_US |
dc.subject | Radial basis function network | en_US |
dc.subject | Wet bulb temperature | en_US |
dc.subject | Cooler efficiency | en_US |
dc.subject | Pressure drop | en_US |
dc.title | Experimental investigation and radial basis function network modeling of direct evaporative cooling systems | en_US |
dc.type | Article | en_US |