Yazar "Bozkurt, Durmuş" seçeneğine göre listele
Listeleniyor 1 - 20 / 35
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe An Algorithm for Stability of DiscreteTime Interval Matrices(Elsevier Science Inc, 2003) Yamaç, Kerem; Bozkurt, DurmuşIn this study, we have given an algorithm for the determine practical asymptotic stability of an discrete-time interval matrices. (C) 2002 Published by Elsevier Science Inc.Öğe Bounding the sum of powers of normalized Laplacian eigenvalues of a graph(ELSEVIER SCIENCE INC, 2018) Li, Jianxi; Guo, Ji-Ming; Shiu, Wai Chee; Altındağ, Ş. Burcu Bozkurt; Bozkurt, DurmuşLet G be a simple connected graph of order n. Its normalized Laplacian eigenvalues are lambda(1) > lambda(2) > ... >lambda(n-1) > lambda(n) = 0. In this paper, new bounds on S-beta*(G) = Sigma (i = 1) (n-1) lambda(beta)(i) (beta not equal 0.1) are derived. (C) 2017 Elsevier Inc. All rights reserved.Öğe Bounds for the Distance Estrada Index of Graphs(AMER INST PHYSICS, 2015) Altındağ, Ş. Burcu Bozkurt; Bozkurt, DurmuşLet G be simple connected graph with n vertices. The distance eigenvalues mu(1) >= mu(2) >= ... >= mu(n) of G are the eigenvalues of its distance matrix D(G). The distance Estrada index of G is defined as DEE(G) = Sigma(n)(i=1) e(mu) [14]. In this paper, we establish better lower bounds for DEE (G) as well as some relations between DEE(G) and the distance energy.Öğe Integer Powers of Certain Complex Tridiagonal Matrices and Some Complex Factorizations(UNIV NIS, FAC SCI MATH, 2017) Bozkurt, Durmuş; Altındağ, Ş. Burcu BozkurtIn this paper, we obtain a general expression for the entries of the rth power of a certain n x n complex tridiagonal matrix where if n is even, r is an element of Z or if n is odd, r is an element of N. In addition, we get the complex factorizations of Fibonacci polynomials, Fibonacci and Pell numbers.Öğe K- Generalized Order-k Perrin Number Presentation by Matrix Method(2012) Kaygısız, Kenan; Bozkurt, DurmuşIn this paper, we give matrix representations of the fc-generalized order-k Perrin Numbers and we obtain relationships between these sequences and matrix. In addition, we calculate the determinant of this matrix.Öğe Lower Bounds for the Energy of (Bipartite) Graphs(UNIV KRAGUJEVAC, FAC SCIENCE, 2017) Altındağ, Ş. Burcu Bozkurt; Bozkurt, DurmuşThe energy of a graph is defined as the sum of absolute values of its eigenvalues. In this paper, we establish some lower bounds for the energy of (bipartite) graphs involving the number of vertices (n), the number edges (m) and the determinant of the adjacency matrix (det A). Our lower bound for graphs improves the lower bound in [2] for a class of graphs.Öğe Matrislerin inverslerinin bant olma şartları(Selçuk Üniversitesi Fen Bilimleri Enstitüsü, 1991) Bozkurt, Durmuş; Sinan, AliBu çalışmada, singüler olmayan A n-kare matrisinin a__,a"_,...,a,, elemanlarının hepsi sıfırdan farklı £2 33 n- l,n- 1 r olmak üzere inversinin [ 2 (n-p)-ll -bant olması için hangi şartları sağlaması gerektiği araş tın İmiş tır. Burada p, l$p$n-2 şartını sağlayan tam sayılardır, çalışma sonucunda A mat risinin, i=l,...,p (l$pÇn-2); k=i+l ve j=i+2,...,n olmak üzere A ( }. ) ve Af. M şeklindeki 2-minörlerinin sıfır olması için gerek ve yeter şartın r =r..=0 olacak şekilde R=A 'in £2-13-bant olması gerektiği gösterilmiştir. Ayrıca Vayne V. Barrett, Philip J.Feinsilver C 13 ve Vayne V.Barrett E 23 'in ça lışmalarındaki "ik>j olmak üzere A matrisinin üçgen özelliğini sağlaması için gerek ve yeter şart R=A 'in üçlü bant matris olmasıdır." şeklindeki teoremlerinde, sıfır olması gereken 2-minör sayısı 2[gJ adettir. Halbuki bizim çalışmamız da n*4 için sıfır olması gereken 2-minör sayısı 2fnj'den daha n- 2 küçük olan fCm, n>=2 I s'dir. s=mÖğe A Note for Bounds of Norms of Hadamard Product of Matrices(Element, 2006) Türkmen, Ramazan; Bozkurt, DurmuşIn this paper, we have established upper bounds for the spectral norms of Cauchy-Toeplitz matrix and Cauchy-Hankel matrix, with g = 1/2 and h = 1. Moreover, we have obtained an upper bound for the spectral norm of Hadamard product of Cauchy-Toeplitz and Cauchy-Hankel matrices. In addition, we have established an upper bound for the norm of Hadamard product of Cauchy-Toeplitz and Cauchy-Hankel matrices.Öğe A Note on Bound for Norms of Cauchy-Hankel Matrices(John Wiley & Sons Ltd, 2003) Solak, Süleyman ; Bozkurt, DurmuşWe determine bounds for the spectral and l(p) norm of Cauchy-Hankel niatrices of the form H-n = [1/(g + h(i +j))](i,j=1)(n) equivalent to ([1/(g + kh)](i,j=1)(n)), k=0, 1,...n - 1, where k is defined by i + j = k (mod n). Copyright (C) 2002 John Wiley Sons, Ltd.Öğe A Note on the Norms of the GCD Matrix(2004) Türkmen, Ramazan; Bozkurt, DurmuşLet S={1, 2,..., n} be a set of positive integers. The n×n matrix [S]=(i, j), where sij =(xi, xj) the greatest common divisor of xi and xj, is called the greatest common divisor GCD matrix on S. In this study, we have obtained some bounds of norms of this matrix. In addition, we have obtained upper bounds of norms of the almost Hilbert-Smith GCD matrix is defined (S) = [(i, j)/ij]i, j=1n.Öğe On computing lth (l=2p, p?N) powers for one type even order antipentadiagonal matrix(Selcuk University Research Center of Applied Mathematics, 2010) Kıyak, Hümeyra; Gürses, İrem; Bozkurt, DurmuşIn this paper, we derive the general expression of the lth (l=2p, p?N) power for one type of even order antipentadiagonal matrix.Öğe On GM LCM And Hilbert Matrices and Their Applications(Elsevier Science Inc, 2003) Solak, Süleyman; Türkmen, Ramazan; Bozkurt, DurmuşWe give upper bounds for the l(p) norm of the Hilbert matrix H = (1/(i + j - 1))(i,j=1)(n) and its Hadamard square. Furthermore determine lower bounds for the Frobenius norms of GCD and LCM matrices. (C) 2002 Elsevier Inc. All rights reserved.Öğe On Lucas Numbers by the Matrix Method(Hacettepe Univ, Fac Sci, 2010) Köken, Fikri; Bozkurt, DurmuşIn this study we define the Lucas Q(L)-matrix similar to the Fibonacci Q-matrix. The Lucas Q(L)-matrix is different from the Fibonacci Q matrix, but is related to it. Using this matrix representation, we have found some well-known equalities and a Binet-like formula for the Lucas numbers.Öğe On the ?p norms of almost cauchy-toeplitz matrices(1996) Bozkurt, DurmuşBu çalışmada, Almost Cauchy-Toeplitz matris tanımını yaptık (yani a herhangi bir reel sayı olmak üzere elemanları t_{ij} a(ij) ve t_{ij}1/(i-j) (i\neq j) şeklinde olan matris). Bu matrisin \ell_p normu için bir alt ve üst sınır bulduk. Ayrıca bu matrisin spektral normuyla ilgili bir konjektürün ispatını yaptık.Öğe On the ?p norms of Cauchy-Toeplitz matrices(Taylor and Francis Inc., 1998) Bozkurt, DurmuşIn this study, we have found an upper and lower bounds for the ?p norm (1 < p < ?) of Cauchy-Toeplitz matrix in the form Tn = [2/(1 + 2(i - j))]i, j=1n. Moreover, we have given a conjecture for the ?pq(1 ? p, q ? ?) norm of this matrix. © 1998 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint.Öğe On the applications of Hadamard square root and Hadamard inverse(2006) Akbulak, Mehmet; Bozkurt, Durmuş; Türkmen, Ramazan; Kaygısız, KenanIn this study, we have established upper and lower bounds for the spectral norm of Hadamard square root and Hadamard inverse of the matrix T_{1/2,1} where the matrix T_{1/2,1} is Cauchy-Toeplitz matrix. We have also obtained nonzero eigenvalues of the Hadamard product of T_{1/2,1} and H_{1/2,1} where the matrix H_{1/2,1} is Cauchy-Hankel matrix. Finally, we have defined Hadamard condition number for Cauchy-Toeplitz matrix and calculated an upper bound for this condition number.Öğe On the Applications of Hadamard Square Root and Hadamard Inverse(Selcuk University Research Center of Applied Mathematics, 2006) Akbulak, Mehmet; Bozkurt, Durmuş; Türkmen, Ramazan; Kaygısız, KenanIn this study, we have established upper and lower bounds for the spectral norm of Hadamard square root and Hadamard inverse of the matrix T_{1/2,1} where the matrix T_{1/2,1} is Cauchy-Toeplitz matrix. We have also obtained nonzero eigenvalues of the Hadamard product of T_{1/2,1} and H_{1/2,1} where the matrix H_{1/2,1} is Cauchy-Hankel matrix. Finally, we have defined Hadamard condition number for Cauchy-Toeplitz matrix and calculated an upper bound for this condition number.Öğe On the Bounds for the Norms of Cauchy-Toeplitz and Cauchy-Hankel Matrices(ELSEVIER SCIENCE INC, 2002) Türkmen, Ramazan; Bozkurt, DurmuşIn this paper, we have established a lower and an upper bounds for the spectral norms of the general Cauchy Toeplitz matrices of the form T-n = [ 1/(g + (i - j)h)], where g = 1/k and h = 1. Moreover, we have obtained an upper bounds for the spectral norm of the Cauchy-Hankel matrices of the form H-n = [1/(g + (i + j)h)], where g = 1/k and h = 1. In addition, we have established a lower and an upper bounds for the Euclidean norm of the Hadamard product Cauchy-Toeplitz and Cauchy-Hankel matrices, (C) 2002 Elsevier Science Inc. All rights reserved.Öğe On the bounds for the spectral norms of some special matrices(Selcuk University Research Center of Applied Mathematics, 2004) Bozkurt, Durmuş; Taşkara, Necati; Köse, HasanIn this paper, we have obtained lower and upper bounds for the spectral norms of Cauchy-Toeplitz and Cauchy-Henkel Matrices.Öğe On The Bounds of Norms of Circulant Cauchy-Toeplitz Matrices(Selçuk Üniversitesi Fen-Edebiyat Fakültesi, 2002) Solak, Süleyman; Bozkurt, Durmuş[Abstract not Available]